\begin{tabbing} (\=(((Unfolds ``l\_member last`` 0) \+ \\[0ex]CollapseTHEN ((Auto\_aux (first\_nat 1:n) ((first\_nat 1:n \-\\[0ex])\=,(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$) \+ \\[0ex]CollapseTHEN (Assert $\parallel$$L$$\parallel$ $>$ 0 \\[0ex] \\[0ex] \\[0ex]THENL [((((RW assert\_pushdownC ({-}1)) \\[0ex]CollapseTHENA ((Auto\_aux (first\_nat 1:n \-\\[0ex])\= ((first\_nat 1:n),(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$) \+ \\[0ex]Colla\=pseTHEN (Easy))$\cdot$;\+ \\[0ex] \\[0ex] \\[0ex]((InstConcl [$\parallel$$L$$\parallel$ {-} 1]) \-\\[0ex]CollapseTHEN ((Auto\_aux (first\_nat 1:n) ((first\_nat \-\\[0ex]2:n),(first\_nat 3:n)) (first\_tok :t) inil\_term)))$\cdot$]))$\cdot$ \end{tabbing}